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Introduction

GAMNAS (Geowetric and Material Nonlinear Analysis of Structures) is a
two-dimensional finite element stress analysis program. The program was
developed to support fracture mechanics studles of debonding and delamfination
(refs. 1-3). Options include linear, geometric nonlinear, material nonlinear,
and combined geometric and material nonlinear analysis.

The purpose of this manual is to document the theoretical basis of GAMNAS
and to provide instruction in the use of the program. Details of the program
organization and logic are presented in order to guide the user who needs to
modify the code to meet come special need. Familiarity with linear finite
element analysis is assumed.

First, theoretical aspects of GAMNAS are presented. Then program speci-
fications, such as allowable problem size, are given. Next the program orga-
nization is described. Finally, the required input data is described. Brief
descriptions of the subroutines and major program variables are given ia
Appendix A. Appendix B gives input data and results for several sample
probleas. Appendix C briefly discusses error messages and possible debug
strategies.

Successful use of any finite element program depends largely on the
ability of the analyst to qualitatively predict the response of a configura-
tion before attempting detailed finite element analysis. This insight will
generally be based on experience and possibly some strength of materials
arguments. Also, very coarse finite element models can be useful. Insight is
particularly important for nonlinear analysis, in which questions of conver-
geuce, uniqueness of solution, and solution strategy mst be addressed.

Hence, the user should become thoroughly familiar with the theoretical basis
of GAMNAS and then gain experience by analyzing a variety of simple configura-

tions before attempting to analyze a complex configuration.



Nomenclature

[ﬁ] incremental strain-displacement wmatrix

[D*] elasto-plastic constitutive matrix

E Young's modulus

F yield surface function

G total strain-energy-release rate

GI,GII mode I and mode II components of strain-energy-release rate
I moment of inertia

(K] transformed global stiffness matrix

(K ].[Ry]  linear and tangential stiffness matrices, respectively

M soment

P;,P; forces traasmitted through crack tip in the x and ; directions
{R] applied load vector

(R} transforeed applied load vector

(T] transformation matrix

u,v displacements in x and y directions, respectively

G,; displacements in x and ; directions, respectively

v volume

X,y rectangular Cartesian coordirates

§.§ rotated rectangular Cartesian coordinates

8 fraction of strain increment required to reacn yleld siurface
Aa virtual crack closure length

{a8} increment to nodal displacement vector

{a€} strain increment

{ae} strain increment required to reach yield surface

{a€) strain increment after reaching yield surface

{8} nodal displacement vector

(8} transformed nodal displacement vector



ex,ey,e normal strains in x and y directions and shear strain in xy
plane, respectively

{e} strain vector

{e}P plastic strain increment

A proportionality coanstant

o effective stress, equal to (oz +a+et-00 -oa -

ef ’ X y z Xy ye
g + 302 1/2
X z xy

oys uniaxial yield stress

{o} stress vector

{oo} stress vector before strain increment

{01} stress vector after strain increment

{v} residual force vector

Theory

Governing Equations

This section outlines the theoretical basis for the GAMNAS computer
code. First, geometric and material nonlinearity are discussed in general.
Then application of the displacement based finite element method to nonlinear
problems are discussed. The description given here follows closely that given
in refs. 4 and 5, where details may be found.

Herein, geometric nonlinear analysis refers to an analysis which calcu-

lates strains using the Lagrangian nonlinear strain-displacement relations,

eqns. (1)
o w1, (av)
X x 2]\3x Ix
2 2
_av, L[feu 3v
& T oy * 3 ‘ay) + (ay) ] 1
=984 3V 3udu  dvav
exy dy 9x 9x dy  9x 3y



The second-order terms in equns. (1) account for finite rotations. However,
the strains are still assumed to be infinitesimal.
For material nonlinear analysis, the nonlinear relationship between

stress and strain is defined iucrementally, eqn. (2)

d{o} = [D*] d{e} (2)

The nonlinear elasto-plastic constitutive matrix [D*] is a function of the
assumed yield surface and flow rule and the current stress state. GAMNAS uses
the von Mises yield surface, eqn. (3) and a flow rule based on the normality

principle, eqn. (4).

F= (o2 +oi 4+ -00 -o009 -oq + 3 )1/2 -0 3
X y z Xy y z Xz Xy ys
=) OF_

The instantaneous uniaxial yield stress, Gys. in eqn. (3) is a function of the
strain history and the specified uniaxial stress-strain curve. Three types of
uniaxial stress-strain curves can be specified: elasto-plastic, bilinear, and
Ramberg-Osgood. These are shown schematically in fig. 1. GAMNAS can only

analyze plastic deformation of isotropic materials.

Application of the finite element method to nonlinear problems is very
similar to that for linear problems. 1In both cases a system of equations is
derived which expresses the equilibrium of iaternally generated forces in a

body with externally applied forces, eqn. (5)

{y} = f (BIT {o} 4V - {R} = O (5)
VOL

In eqn. (5) {v}, {0}, and {R} are the residual force, stress, and applied load

vectors, respectively. The integral is the vector of internally generated



forces. The matrix [B] is the incremental strain-displacement matrix, as

defined by eqn. (6)
d{e} = [B] d{6} (6)

where [8] is the nodal displacement vector, i.e., a list of u and v
displacements at the nodes. For linear problems eqn. (5) is a linear set of
equations with unknowns {§}.

For geometrically nonlinear problems eqns. (1) are used with eqn. (6) to
derive [B]. The matrix [B] is found to vary linearly with {§}, as is expected
from the quadratic form of eqn. (1). The stresses {og} are linearly related to
the strains, which vary quadratically with {§}. Hence, eqn. (5) is a set of
cubic equations in {§}.

For elasto-plastic problems, the matrix [B] is independent of {6}, but
the relationship between {8} and {o} is a complicated nonlinear function.
Furthermore, the relationship between {68} and {o} is path (i.e., history)
dependent. Hence, the solution of eqn. (1) for a desired load level is
obtained by dividing the total load intc a series of small load increments.
For each load increment, the relationship between stress and strain is deter-
mined from eqn. (2). i

For combined geometric and materfal nonlinearity, the nonlinear relation-

ships for each are simply used together.

Iterative Solution

The governing equations, eqn. (5), are solved iteratively using modified
Newton-Raphson methods (ref. 4). The basic Newton-Raphson method for the
first load step is outlined below.

1. Obtain a linear solution using the linear stiffness matrix KO:

-1
(6.} = K17 (R}



2. Calculate residuals {¢} with eqn. (5)
3. Check for convergence. Stop if {y} is sufficiently small.
4. Calculate tangential stiffness matrix, [Kyl
(The tangential stiffness matrix is defined by the equation
(K] {48} = {ay}.)

5. Solve for correction to displacements

(86} = = (K. (4}

6. Update displacements: & = § + AS

7. Go to step 2.
If multiple load steps are used, only step 1l changes. After obtaining a
converged solution for load step "i", the linear solution (i.e., the new

step (1)) for the next load step is

" -1
(8}, = (8}, + [KJT (AR}, )

i+l

where {AR} is the load increment.

i+l
Different versions of the Newton-Raphson technique described above were
used for geometric nonlinear, material nonlinear, and combined nonlinear
analysis in GAMNAS. The main differences are in the way the tangential stiff-
ness matrix, [Kp], is approximated. For geometric nonlinear analysis [Kp] 1s
updated every "NCYCLE" iterations, where NCYCLE is an input parameter. For
material nonlinear analysis [KT] is approximated by the linear stiffness
matrix [Ko] for all iterations. For combined geometric and material nonlinear
analysis [KT] is updated every "NCYCLE" {terations, but the linear stress-
strain relations are used in calculating [Kp]. For combined nonlinear
analysis the solution for each load increment begins with obtaining a con-

verged solution in which no additional yielding is allowed. After obtaining

this “transition” solution, iterations begin in whicl both geometric and



material nonlinear effects are included. This procedure reduces spurious
material yielding which can be an artifact of iterative solution procedures.
This procedure will be discussed further in the discussion of the flowchart

for the subroutine ITERATE.

Strain Energy Release Rates

GAMNAS has the option to calculate Mode I and Mode II strain energy
release rates. Strain energy release rates are calculated using a virtual
crack extension technique similar to that reported in ref. 6. This technique
uses the forces transmitted across the crack tip and the relative displace-
ments just ahead of the crack tip to determine the energy release rate. For
geometrically nonlinear problems the forces and dispiacements are transformed
to the local rotated coordinate system, as shown in fig. 2. Figure 2 also

shows the equations used to calculate Gy and Gyy. The strain energy

release rate calculation is valid for linear and geometrically nonlinear

analysis only. The program assumes the mesh around the crack tip is rectangu-
lar and that the crack is initially parallel to the x-axis. Near the crar

tip the mesh must be symmetrical about the crack tip.

Boundary Conditions
The following boundary conditions can be prescribed in GAMNAS:
l. Nodal loads
2. Specified displacements

3. Equivalence of two or more displacements, e.g., 6i = 61

4., Equivalence of one displacement and the negative of another
displacement, e.g., 61 = -Gi

To prescribe a displacement 6t = 60 the diagonal term of the

1030

ith equation is

{th

replaced by a large number, , and the "load” term for the equation is

set to lO30 60. To impose a multi-point constraint, {.e.,



6§, = 6§, or 6i = -§ , the displacement and load vectors and the stiffness

i i) ¥y
matrix are transformed (ref. 10). The transformation is best explained by
example. Consider the linear system [K] {8} = {R}. Assume there are four

nodal displacements. To impose the condition 61 = 63 a new displacement

vector {8} is defined such that

{8} = [T] {8}

puen iy

N ( N
5 1 0 1 0 8,-5,
8 0 1 0 0 8
2 2
4 = < (8)
63? 0o 0 1 0 5 ?
5, 0 0 0 1 5,
L4) L B L J

The new stiffness matrix [K] and load vector {R} ate

K] = (1) (K] [T

T

{R} = [T]" (R} (9)

The new governing equations are [K] {3} = {R}. Note that 31 = 61 - 63.
Hence, to impose the condition 61 = 63, we need simply impose the condition

§, = 0.

1
When multi-point constraints are specified, the bandwidth generally
increases. The increase in bandwidth depends on the node numbering scheme.

Hence, the multi-point constraints should be considered when selecting the

node numhering scheme.

Elements
GAMNAS uses the four—node isoparametric quadrilateral. This element is

well known to perform poorly in modeling bending type deformation when exact



integration is used. But the performance can he dramatically improved by
using selective reduced integration. References 7 and 8 describe the proce-
dure for linear problems. Reference 9 describes the procedure for geometri-
cally nonlinear problems. The user can specify either full or selective

reduced integration in the program.

Program Specifications

GAMNAS is written in Prime's extended version of FORTRAN 77. Core
requirements are 604,000 16 bit words and compilation time is approximately 2
minutes on the Prime 750. Execution times will vary greatly depending on the
particular finite-element model. The current maximum allowable values of the
major parameters are given in the description of the input data. An in-core
equation solver is used. Hence, the maximum problem size is limit:d by the
memory of the computer being used.

Most of the core requirements are for holding the global stiffness
matrix, “SN.” The matrix SN is dimensioned (1300, 70). which permits 1300
degrees of freedom (650 nodes) and a bandwidth of 70. GAMNAS car be quickly
modified using a text editor to change the maximum bandwidth and number of
nodes. The required changes and the order the changes should be made are
listed below:

1) Change the string "(1300,70" to "(XXX,YYY" everywhere, where XXX and

YYY are the new number of rows and columns, respectively.

2) Change the string "(1300" to "(XXX" everywhere, where XXX is the new

number of rows.

3) In subroutine INITIAL change the following two lines:

MRANK = 1300 ¢« change 1300 to XXX

MIBW = 70 « change to 70 to YYY



where XXX and YYY are the new number of rows and columns in SN,

respectively.

Program Organization

In this section the flow of GAMNAS is described. Flowcharts are given
for the more complicated routines: the main program, ITERATE, and STRSCAL.
Very brief description of the subroutines and the major program variables are
given in Appendix A.

An annotated flowchart for the main program is shown in Figure 3. Only
one proportional load vector is input. The different load numbers (LOADNUM)
refer to the scale factor by which the load vector is multiplied. For each
new load, a linear incremental solution is obtained in the main program before
calling ITERATE to obtain the nonlinear incremental solutions. the linear
solution for the first locad step and all nonlinear solutions are output.

Figure 4 shows a flowchart for the subroutine ITERATE. The subroutine
utilizes the modified Newton-Raphson technique described earlier to solve
eqn. (5). Note that for combined seometric and material nonlinearity (i.e..
ANALYS = CNONLIN), the routine GITER is called to obtaln a transition non-
linear solution for the load increment, assuming no additional vielding
occurs. Then LTERATE proceeds to determine the converged solution which
includes both geometric and material nonlinearitv. The tangential stiffness
matrix 1{s updated bv calling STIFF., For just material nonlinearity (i.e.,
ANALYS = PNONLIN), STIFF is not called. For geometric or combined nonlinear
analysis, STIFF 1{s called every "NCYCLE" iterations.

Fizaire 5 shows a flowchart for the subroutine STRSCAL. STRSCAL calcu-
lates the incremental stress vector {A¢} corresponding to the calculated
incremental strains {Ac}. For liasear material response, {Ac} is simply the

product of the constitutive matrix [D] and {Ae}. For nonlinear material

10



behavior the relatfonship between {Ae} and {Ao} depends on the current stress
state {oo} velative to the yleld surface and on the magnitude of the strain
{ncrement. The relative positions of the stress state and the yield surface
{s determined from eqn. (3). For convenience in the Flowchart, the firgt term
in eqn. (3) is defined to be the e¢ffective stress Oy ¢ For an arhitrary

stress state {o}, the followiny relationships apply:

oef({o}) < o, * stress state is tnside yield surface
o ({vt) = 0 + stress state is on yield surface

ef vs

oef({o}) > oys + stress state {s outside yield surface

The first step is to calculate the Final stress state [ol} assuming no
additional yielding (block 1), Block numbers are indicated at the upper left-
hand corner of the blocks. If oef({ol}) < oys then {al} is the correct
stress state (block 3A). If not, then {00} relative to the yield surface is
examined (block 3B). If O = oef({oo}). block 4B is followed. If
Ovs > oef({oo}), the initial stress state is inside the yield surface. Hence,
the strain incremeat must be divided into two parts: that required :o reach
the yield surface, Ae, and the remainder, Ag, which is the strain increment
after reaching the yield surface. These strain increments are calculated by
solving the equations in block 4A. Next the i{ncremental elasto-plastic matrix
{D*} is calculated. The final stress state is obtained by adding the linear
and nonlinear stress increments, [D] {Ae} and [D*] {A€}, respectively
(block 6). Note that if {oo} had been on the yield surface, {A€} = 0 and

{A€} = Ae. Next the yield stress Gys is updated for strain-hardening

materials. Finally, {ol} is scaled back to the new yield surface (block 8).

11



Input Data
The required input data is described in this section. Where applicable,

the maximum allowable values of the input parameters are noted.

No. of
Card set Parameters cards Format
1. TITLE(I), I = 1,60 3 20A4
TITLE = TITLE OF PROBLEM
2. OUTPUT, ANALYS, PLANE, QUADRAT, ENERGY 1 SA8

OUTPUT = Output »ption
= XLONG for long output
= SHORT for output (the nodal coordinates, element
connectivity, and boundary conditions are not in the

output)

ANALYS = Type of analysis

XLINEAR for linear analysis

GNONLIN for geometrically nonlinear analysis

PNONLIN for materially nonlinear analysis

CNONLIN for combined geometric and material nonlinear
analysis

PLANE = Option for plane stress/plane strain analysis
= PSTRESS for plane stress
= PSTRAIN for plane strain
QUADRAT = Integration option
= REDUC for reduced integration
= XFULL for full integration
ENERGY = Option for straln-energy release rate calculations
= DOG for G calculation

= DONOJG for no G calculation

12



No. of

Card set Parameters cards Format
3. ITSTEP, NCYCLE, IMAX 1 315

ITSTEP = Number of steps in the incremental loading
minfimum = |, maximum = 30

NCYCLE = Number of iterations between updates of stiffness matrix

IMAX = Maximum number of iterations allowed before terminatiang

4. ACCURACY 1 F10.3
ACCURALY = Maximum residual allowed in converged sclution

5. NN, NE, NRN

NN = Number of nodes in the FE model, max. = 650
NE = Number of elements in che FE model
NRN = Number of podes with a restrained degree of freedom

6. Nodal Coordina-es:

x-coordinate
XX, N(1) = 1,13 * E10.4, 1315
XX = coordinate
N( ) = list of nodes with coordinate XX
*Input until all x-coordinates are

specified. End x-coordinate data
with a blank card.

y—coordinate

XX, (1), I = 1,13 * E10.4, 1315
*Similar to input of x-cocrdinates

7. I, IN(I), JN(I). KN(I), LN(I) NE SIS
I,IN,JN,KN,LN = Element number, four node numbers *or element I.

Nodes must be specified in a counterclockwise
direction.

13



oy T

OR’C:N’}\:. r..t:::_. [2r ]

OF POOR QUALITY No. of
Card set Parameters cards Format
8. K. NRL (2*K-1). NRL (2%*K) NRN 315

K = Node number

NRL (2*K-1), NRL (2*K) = Constraints in X and Y directions,
respectively, at node K.
0 indicates no coastraint
! indicates constraint

Note: Do not include degrees of freedom involved in multipo’nt

constraints. Do include degrees of freedom with specified
displacements.

SKIP 9-12 IF ENERGY = DONGJG
9. INP i 5

INP = Number of node sets used fn virtual crack extension
calculation (maximum = 15)

10. NEGCAL(IL), I = 1. (INP+1) (ine+1)/16" 1615
NEGCAL = Element numbers for clements contributing to the anodal

forces required for virtual crack extension. (See
example in skstch below. Element numbers are circled.)

1 9
*lo|lo|o9lole 0@,

0 it h2 Qi3 s 15 116 — ___Crack

. 1 120~ 121 22
¢ |®|0|0)0|0|®
LCrackTip

IF INP = 3,

NEGCAL (1 to 4) =2, 3, 4, 5

NFGCAL (1 to 3) = 14, 13, 12

NDGCAL (1 to 6) 15, 19, 16, 20, 17, 21

TRound off to next higher integer.

14



No. of

Card set Parameters cards Format
11. NFGCAL(I), I = 1, INP np/16t 1615

NPGCAL(I) = Node numbers for nodes along which virtual
crack extension forces are calculated.
List according to distance from crack tip,
with the crack tip node as the first ome.
(See sketch above.)
12. NDGCAL(I), I = 1, (2*INP) 2+Inp/161 161>
NDGCAL(I) = Node numbers for the nodes used to calculate
cracking opening and sliding displacements
Repeat card sets 13-16 for each material group.
Maximum number of material groups = 10
End last group with blank card.
13. J, WATER(J) 1 15, A8
J = Material group number
XMATER = Material type

ELASTIC for linear stress-strain curve

ELPLAST for elastic-perfectly plastic stress-strain
curve

BLINEAR for bilinear stress—strain curve

= RAMOSGO for Ramberg-Osgood stress-strain curve

14. EX, EY, PYX, GXY 1 4E10.3

Exs Ey. vyx’ nyi

E, Young's modulus in x-direction

Ey Young's modulus in y-direction

€
v = - X = poigson's ratio
yx ey
= Contraction in x-direction due to unit
applied strain in y-direction
ny Shear modulus

tRound off to next highest integer.

15



ORIGINAL PAGE 1S
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No. of
Card set Parameters cards Format
15. YIELDS, ET, RO, ANM 1 SE10.3
YIELDS = Yield stress
ET = Tangent moduluz for yielded bilinear material

RO, ANM = Parameters defining Ramberg-Osgood stress-strain
o o ANM
relarion, ¢ = E + (ﬁ)_)

(a) If XMATER = ELASTIC, foput YIELDS = ET = RO = 1.0 x 102!,
ANM = 10

(b) If XMATER = BLINEAR, input proper YIELDS and ET and
set RO = ANM = 0.0

(c) If XMATER = RAMOSGO, input proper YIELDS, RO and ANM and
set ET = 0.0

16. NELl, NEL2 6 NELINC * 315

NEL1, NEL2, NELINC = Loop parameters used to define
elements in material group

NEL1 = First element
NEL2 = Last element
NELINC = Loop increment

e.g., 1, 50, 20 defines elemeunts 1,
21, and 31 to be in material group

*Repeat until all elements in group are defined.
End card set 16 by specifying NEL1 = NEL2 = NELINC = 0

17. DELLOAD(I) = 1, ITSTE® 1rsTep/8! 8F10.3

DELLOAD(I) = Scale factor for proportional load
vector for load step I. Always
specify DELLOAD(1) = 1.0

"Round off to next higher {nteger.

16



No. of

Card set Parameters cards Format
18. NLN, NCD, NED 1 315

NLN = Number of nodes with applied loads
NCD = Number of multipoint constraints, max = 15
NED = Number of specified displacements, max = 30
19. K, FX, FY NLN 15, 2Fr10.3
K = Node number
FX,FY = Loads in x and y directions, respectively
20. K, KDF, URD NED 215, F10.3
K = Node number
KDF = Displacement direction, specify 1 for x direction
specify 2 for y direction

URD

Magnitude of displacement
SKIP 21-24 IF NCD = 0
21, NMPR(1), I = 1, NCD NCD/16 1615

NMPR(I) = Number of degrees of freedom involved in the
Ith me:ltipoint constraint. max = 20

22. ((ICDN(1,J),J=1,NMPR(I)), I = 1, NCD) NCD sets 1615

ICDN(1,J) = Jth degree of freedom involved in the
Ith multipoint constraint

Start a new card for each multipoint constraint.
Start withk lowest number degree of freedom.

23. NZKV 1 IS5

NZKV = Number of multipoint constraints for
which there is an applied load

24. NKV, ATOT NZKV 15, F10.3

NKV, ATOT: ATCT is the non-zero load associated with
the NKV get of constrained nodes

17
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Figure 1.- Types of uniaxial stress-strain curves.
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INITIAL INITIALIZE MATRICES
[}
PROGOPT READ PROGRAM OPTIONS
SDATA READ GEOMETRIC DATA,
i BOUNDARY CONDITIONS
ELPROP READ MATERIAL
7 PROPERTIES
LDATA READ LOAD DATA
LOADNUM = 1
! NO
STIFF | LOADNUM >1 AND fe—y ASSEMBLE GLOBAL
i ANALYS = PNONLIN STIFFNESS MATRIX
YES
DBAND DECOMPOSE GLOBAL
STIFFNESS MATRIX
SBAND  fe————— SOLVE EQUATICNS
| N ARE THERE MULT1-POINT
NCD % 07 CONSTRAINTS 7
RECOVER ORIGINAL
Y YES DISPLACEMENT VECTOR
MULPCON IF MULTI-POINT
u CONSTRAINTS WERE
e IMPOSE D
LINSOLN == LOADNUM = 17 OUTPUT LINEAR SOLUTION
] NO
ITERATE ITERATE FOR NONLINEAR
) SOLUTION
INCLOAD INCREMENT PROPORTIONAL
I LOAD VECTOR
LOADNUM = ITSTEP 7 |2
‘ YES
STOP

Figure 3.- Flow chart for main program.
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OF POOR QuALTY

ITER =
ITER +1

_———-‘—TITER =1

NO

1 YES
ANALYS = CMONLIN? l‘ — = =

RESUL

1

RESID

GITER

ANALYS = PNONLIN?

ITER=1? OR

ICOUNT = NCYCLE?

YES NO

| YES
STIFF

| DBAND

D |

NO

MULPCON

YES

RESID

{

CONVERG

{

NO

 CONVERGED?

YES

RESUL

—=RETURN

Figure 4.- Flow chart for subroutine Iterate.
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YES,
RECALCULATE 0
3B

4A

5A

o= foof+ [ ae)

. ‘ Oef (gal})> oys

e

o) 146

!

1

oys > Ot ({oo})

s |

DECOMPOSE A€ INTO Ae
AND {AE} BY SOLVING
SIMULTANEOUS EQNS.

o} = oo+ [ ae
0y ({o}) = g
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= B {Ae]
= {Ae}A-gAE}

AE}
AE]

{

l

CALCULATE INCREMENTAL
ELASTO-PLASTIC MATRIX

[ <)

P Y:E,
ORIGINAL PAGE |

NO,

CURRENT STRESS VECTOR o
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Figure 5.- Flow chart for subroutine STRSCAL.
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APPENDIX A

This appendix gives the names and function of the subroutines and the

major program variables.

Subroutines

1.
2.
3.

4,

11.
12.
13.
14,
15.
l6.
17.
18.
19.
20.

21.

NAME
BLKSIGM
BLMAT
BMAX Q4
CFILL
CONVERG
DATA
DBAND
DEPMAT
ELPROP
FORCEP
GCAL
GITER
IDVEC
INCLOAD
INITIAL
ITERATE
KLARGE
KSIGNEW
LDATA
LINSOLN

MATMUL

FUNCTION
Calculates submatrices for element initial stress matrix
Calculates nonlinear component of strain-displacement matrix
Calculates linear component of strain-displacement matrix
Fills matrix of element nodal coordinates
Checks for convergence
Reads nodal coordinate data
Performs Cholesky decomposition on global stiffness matrix
Calculates elastic-plastic matrix, [D:p]
Reads material properties
Calculates internally generated nodal forces for an element
Calculates strain-energy release rates
Solves nonlinear equations
Fills vector of element degrees of freedom
Scales load vector
Initializes variables
Solves nonlinear equations
Calculates element large deflection stiffness matrix
Calculates element initial stress matrix
Reads load data
Outputs linear solution

Performs matrix multiplication
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22. MULPCON

Modifies stiffness matrix and displacement vector for milti-point

constraints

23. PROGOPT
24. RCADD
25. RESID
26. RESUL
27. SBAND
28. SDATA
29. STAXQ4
30. STIFF
31. STRSCAL

32. TRANS

Solves set of linear equations.

Reads program options
Adds rows and columns of the stiffness matrix
Calculates residual force vector

Calculates strains and stresses

(Used with DBAND)

Reads structural data

Calculates linear element stiffness matrix

Asgembles global stiffness matrix

Calculates incremental stresses from incremental strain

Generates transpose of a matrix

Program Variables (Arrays are shown with their dimensions.)

Variable
AN (1300)
ANALYS

ANM

ANTOTAL (1300)
AR (1300)
ATOT

DELLOAD (30)
DISP (1300)
DN (1300)

DPS (30)

ENERGY

Definition
Incremental load vector
Type of analysis

Exponent in Ramberg-Osgood equation for uniaxial stress-—
strain curve

i)
E RO
Total load vector
Nodal restraint force vector
Load associated with multipoint constraint
Scale factor for incremental loads
Incremental displacement vector
Total displacement vector
Vector of snecified non-zero displacements

Option for strain-energy release rate calculation
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FF (1300.4)
FI (1300,4)

FXX (10)

FYY (10)

IBW

ICDN (20,15)
IN (1300)

JN (1300)

KN (1300)

LN (1300)

INP

IPE (1300)
ITSTEP
LOADNUM
MATER (1300)

MIBW

MRANK

NCD

NDPS (30)
NE

NED

NLN

NMPR

NN

Effective stresses at the end of an {increment
Effective stresses at the beginning of an increment

X-direction forces used in strain-energy-release rate
calculation

Y-direction forces used in strain-energy-release rate
calculation

Bandwidth of global stiffness matrix

Degrees of freedom involved in multi-point constraints

Element connectivity arrays. Connectivity for element
number I is IN{I), JN(I), KN(I), LN(I)

Number of node sets used in virtual crack closure calculation
of strain-energy release rates

List of yielded elements (only used for output)
Numbe: of incremental load steps

Incremental load step number

Element material group numbers

Number of columns in global stiffness matrix, SN.
Currently MIBW = 70

Number of rows in global stiffness matrix, SN. Currently
MRANK = 1300

Number of multipoint constraints

Vector of degrees of freedom with specified non-zero values
Number of elements ir finite element model

Number of specified displacements

Number of nodes with applied forces

Number of degrees of freedom involved in a set of wmultipoint
constraints

Number of nodes in finite element model
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NND Number of degrees of freedom in finite element model before
applying boundary conditions

NRL (1300) Degree of freedom restraint list

NRN Number of nodes with a restrained degree of freedom

OUTPUT Output option

PLANE Plane stress/plane strain optifon

PSI (1300) Residual force vector

QUADRAT Integration option

RO Parameter in Ramberg-Osgood equation. See definition for
“ANM"

SGYBAR (1300,4) Current vield stress

SN (1300,70) Global stiffness matrix

STRESS (1300,i2) Stresses

T3 (10,3,3) Elasticity matrices for the material groups

X (10) Tangential displacements vector for strain-—energy-release
rate calculation

Uy (10) Opening displacements vector for strain-energy-release rate
calculation

X {1300) Nodal x—coord:nates

Y (1300) Nodal y-coordinates



APPENDIX B

This appendix gives input data and results for three samples problems.

The first problem (fig. B-la) involves transverse displacement of a long
thin rod. The finite element mesh is shown with node and element numbers and
boundary conditions. The left end is pinned; the right end can move only in
the “y” direction. The transverse displacement, v, at node 9 was specified
because the initial transverse stiffness is zero, which would have caused a
singular stiffness matrix if a transverse load had been specified. Although
the rod initially has zero transverse stiffness, geometrically nomnlinear
effects stiffen the system as the transverse displacement laocreases.

Figure B-1b shows the calculated axial stress in the rod (element 2) as a
function of lateral displacement. The finite element results are shown as
symbols. The two curves are exact solutions, derived using simple trigonom—
etry, for a rod under axial load. One curve is for a linear elastic material
and the other is for a elasto-perfectly plastic material with a yield stress
of 50 KSI. The finite element analysis predicts the nonlinear response very
well. The differences between the exact results and the finite element
results are due to the very coarse mesh and the end restraints not being along
the rod's longitudinal axis. Table B-1 lists the numerical values at the
element centroids calculated by GAMNAS.

Figure B-2 shows the input data for the linear elastic rod. Required
changes to this data for the elasto-perfectly plastic rod are shown in
parenthesis.

The second problem involves transverse loading of a double cantilever
beam. Figure B-3 shows the finite eiement model, which has 50 nodes and 32
elements. Two versions of the finite element analysis were used: one version

used full integration and one used reduced integration. The input data for
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analysis with reduced integration are shown ir 2. B-4. The change required
for full integration is shown in parenthesis.

The strain energy release rate (using strength of materials) is givean by

2
M
G ’EI— (Bl)

A transverse load of 20 lb. was used, resulting in a moment of 40 in./lb.
From eqn. (Bl), G 1is calculated to be 1.92 1b/in. The full and reduced
integratioan yielded 1.45 1b/in. and 1.97 1b/in., respectively. Even with a
coarse mesh, the reduced integration version yielded an accurate result. The
full integration version illustrates the well-known poor performance of
isoparametric quadrilaterals in modeling bending deformation.

The final problem (see fig. B-5a) involves polar symmetric loading of a
rectangular region. By imposing appropriate boundary conditions along x = O,
only half of the region needed to be wmodeled. The polar symmetric conditions
are imposed using multi—point constraints to specify u(o,y) = -u(o,-y) and
v(o,y) = -v(o,~y).

Figure B-5 shows the finite element model before and after loading.
Table B-2 gives the numerical values of the nodal displacements. The

required input data are shown in fig. B-6.
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TABLE B-1 AXIAL STRESS IN LONG THIN ROD
LATERAL AXIAL STRESS, KSI
DEFLECTION ELEMENT MATERIAL
INCHES 1 2 3 4 TYPE
1 8.868 8.874 8.874 8.868 LINEAR
2 43.48 43.52 43.52 43.48
3 104.8 104.9 104.9 104.8
4 191.7 191.9 191.9 191.7
5 303.7 303.9 303.9 303.7
1 8.868 8.874 8.874 8.568 NONLINEAR
2 40.03 40.09 40.09 40.03
3 48.61 48.68 48.68 48.61
4 49.53 49.60 49.60 49.53
5 49,84 49.91 49.91 49.84
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TABLE B-2 NODAL DISPLACEMENTS (INCHES) FOR RECTANGULAR
REGION WITH FOLAR SYMMETRIC LOADS

NODE u x 104 v x 10% NODE | u x 10% v x 10%
1 -1.095 .08053 14 1.291 -.4773
2 -.6526 .02078 15 2.146 -.6216
3 .2 x 10723 .2 x 10723 16 -.4933 -1.063
4 6526 -.02078 17 -.4438 -1.028
5 1.095 -.08053 18 .2080 -1.140
6 -.909 ~-.2388 19 1.574 ~1.100
7 -.4577 -.2521 20 3.415 ~1.268
8 .1880 -.2250 21 -.1146 -.5 x 10723
9 .9405 -.2243 22 -.3693 ~1.195
10 1.462 -.3232 23 .3345 -2.047
11 -.7632 -.6573 24 1.532 ~2.900
12 -.3817 -.6648 25 5.721 ~3.731
13 .2632 -.5427
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ORIGINAL FidE 18
OF POOR QUALITY

4 6 8 10
f 3 5 7 3@
. 20 -

a) FINITE ELEMENT MODEL FOR A LONG THIN ROD

400 —

300

Axial

stress, 200 |~

ksi

100 —

+
A

Elastic
Elasto-plastic
Exact solution

Ay
—(/T |

~—aA

1

Lateral deflection, in,

2 3

4

b) AXIAL STRESS VS. SPECIFIED TRANSVEPSE DISPLACEMENT

J
5

Figure B-1.- Transverse displacement of a long thin rod.
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ORIGINAL PAGE 1S
OF POOR QUALITY

LONG SLENDER BEAM-COLUMN cosMicC-1
L Yy Yy Y Ry YT Y Y Y Y Y Y YT Y YT R YT LY YTy T2 L YT
P Y Y Y Y T Yy P Y Y R YT Y TR YT Yy Y Y Yy Yy Y

SHORT  GNONLIN PSTRESS REDUC  DONDJG (CHANGE GNONLIN TO CNONLIN)
s 2 20
0 010
10 & 2
o0 1 2
s 0 - T
10 5 &
15 7 8
2 % 10
0000000000000000000000000000
o0 1 3 s 7 9
2 2 a4 & 8 10
0000020000000000000000000000
1 1 I3 a2
2 3 s & 4
a3 s 7 8 &
4 7 < 10 ]
1 1 1
L4 1 1
LELASTIC (CHANGE ELASTIC TO ELPLAST)

O 100E+0B O 100E+08 O 300E+00 O IB5SE-07
0 S0CE+05 O 0Q0E+00 O ODQE+O0 O 0Q0E+00

1
]

[o]
9

4
s}

1 000

o

-

<

Figure B-2.- Input file for linear elastic rod.

1
[o]

2 GOo 3 000 4 000 S 000
1
1 000

rod are shown in parentheses.
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CruGINAL PACE I3
OF POOR QUALITY

Crack tip detail

N

N

W|@|@

8 13 18 124 30

Uefelef
AY "

/Crack tip AZO 1bs

5 50
e
| %
z 3 @ # —- X
1" 2 (:>
| oy e ©

45
6
[li—_ 4" — o o

Figure B-3.- Finite-element model for double-cantilever beam. Crack extends from
X =0.0 to 2.0 along the line Y = 0.0.
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ORIGINAL FACE 19
OF POOR QUALITY

DOUBLE CANTILEVERED BEAM cosmMIc-3
;;OOI.I;.;.;;;';;:I;0.l'..'.I.;0;;Q.;Q'..QQQ';CCC;'Q.D.I...0;;....;.
SHORT  XLINEAR PSTRESS REDUC  DOC (CHANGE REDUC TO XFULL)
1 1 1
1 000

50 32 2

4000E+00 1 2 3 4 5
2000E+00 & 7 e 9? 10
1000E+00 11 12 13 14 15

0 0000E+00 16 17 18 19 20

0 1000E+00 21 22 23 24 25 26

O 2000E+00 227 28 29 30 31 2

0O 4000E+00 33 34 3% 236 37 38

0 BOOOE+QO0 39 40 431 42 43 44

0 2000€+01 45 46 47 48 49 30

- 1000E+00 1 3 11 16 21 27 33 I 43
- S5000E-01 2 7 12 17 22 28 34 40 46
O O000OE+Q0 3 8 13 18 23 29 3% 72 47
O 0000E+00 24 30 36 42 48

0 S000E-01 4 L 14 19 25 37 43 49
0 1000E+00 S 10 13 20 26 32 39 44 50

1 & 7 2

) 11 1z 7
11 16 17 12
16 21 22 17
21 27 28 22
27 33 34 28
33 39 40 34
39 43 a6 40

2 7 8 3
10 7 12 13 -]
11 12 17 18 13
12 17 22 23 18
13 a2 28 29 2
14 20 34 as 29
19 34 40 a1 3s
16 40 a6 47 41
17 3 -] 9 4
18 8 13 14 9
19 13 18 19 14
20 18 24 2% 19
a1 24 30 3 a3
22 30 35 37 31
a3 3 a2 43 37
24 a2 48 49 43
2% 4 ? 10 S
26 e 14 15 10
a7 14 19 20 13
28 19 2 26 20
29 25 N k=4 26
30 k3] 37 38 32
31 37 43 a4 38
32 43 49 S0 44
45 1 1
50 1 [+]

1

VANV IWN =~

19 20

19

23 24
1ELASTIC

O 100E+08 O I100E+08 O JOOE+Q0 O 38IE+07
0 OOQE+00 O O00E+00 O O0OE+00 O OOOE+00

1 2 1
o] [+} 4]
1 €00
1 0 ]
$0 0 000 20 000

Figure B-4.- Input file for reduced integration analysis of double-cantilever beam.
The change required for full integration is shown in parenthesis.
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ORIGINAL PACE 19
OF POOR QUALITY

< 8“

a) RECTANGULAR REGION WITH POLAR SYMMETRIC LOADS

Av

! I | ! = ~y—— P = 1000 1bs
,' | : | ;
] K 9 /
I ! T=~
| | l ,’ 7"7
4 H l )
—— X

| Ittt =

b) ORIGIMAL AMD DEFORMED CONFIGURATIONS

Figure B~5.- Polar symmetric loading of a rectangular region.
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ORIGINAL Fida. 13
OF POOR QUALITY

POLAR-SYMMETRIC LOADING OF RECTANGULAR REGION
sasancans 1224 FILE=COBMIC-S

"XLONG  XLINEAR PSTRESS XFUuLL  DONOJUG
1 1 1
1 000
2% 16 2

O 0000E+00 1 2 3 4 S
0 1000E+01 [} 7 -] 9 10
0 2000€+01 11 12 13 14 19
0 J000E+01 16 17 18 19 20
0 4000E+01 21 22 23 24 25
0 0000E+00 1 ] 11 16 21
0 1000E+01 2 7 12 17 22
O 2000E+01 3 8 13 18 D
O 3000E+01L q ? 14 19 24
O 4000E+01 S 10 15 20 2%

1 ) 7 2
& 11 12 7
11 16 17 12
16 21 22 17
2 7 8 3
? 12 13 -]
1 17 18 13
17 22 23 19
3 -] 9 4
10 -] 13 14 9
11 13 18 19 14
12 18 23 24 19
13 q 9 10 3
14 9 14 13 H
13 14 19 20 15
16 19 24 23 20

YONOCVLDWUN -

3 1 1
21 -] 1
1ELASTIC

O 100E+08 O 100E+08 O 300E+00 O 3IBSE+07
0 OOOE+00 O OOOE+00 O O00E+QO0 O OOQE+00

1 1e 1

o o o

1 000

1 4
25 1000 000 0 000
2 2 2
-1 -9

-3 -7
-2 -10

-4 -8

o

Figure B-6.- Input file for polar symmetric loading of rectangular region.
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APPENDIX C
This appendix discusses error messages and potential debug strategies.
A self-explanatory diagnostic message is output and execution terminated
under the following conditions:
1) A node has an unspecified coordinate
2) An element has an unspecified material group number
3) The plane stress or plane strain option is spelled incorrectly

4) An element has a linear stiffness matrix with a diagonal element less
than or equal to zero.

5) The rank or bandwidth of the global stiffness matrix exceeds the
maximum allowed.

If the global stiffness matrix {s singular, the decomposition routine,
DBAND, prints "Matrix is singular” and halts execution. Failure to specify
sufficient restraints to prevent rigid body motion is a frequent cause for a
singular stiffness matrix. A singular stiffness matrix is often encountered
in geometrically nonlinear analysis because the load increments are too large
(which causes the iterative solution process to diverge) or because buckling
occurs. The maximum allowable load increment can only be determined through
experience. However, frequent updating of the tangential stiffness matrix
(i.e., a small value is input for NCYCLE) does permit larger load increments.

The internally generated forces at all nodes are calculated and output.
These forces should be numerically zero except at nodes where loads are
applied or displacements are specified, or at nodes involved in a multi-point
constraint. Errors in modeling will often cause spurious nodal forces, which
can be used to help isolate the modeling errors.

Plotting all finite element models is highly recommended, since the plot
will quickly reveal many input errors. To track down errors not diagnosed by

GAMNAS, host computer debug utilities are recommended.
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